
[Senthilkumar et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1830-1833]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Improve Virtualization Technique Using Packet Aggregation Mechanism
A.Senthilkumar*1, Mr.G. Sivakumar2

*1M.E – II Year, Gnanamani College Of Engineering, Namakkal, India
2Assistant Professor, Gnanamani College Of Engineering, Namakkal, India

senthilafree@gmail.com

Abstract
Virtualization is a key technology for cloud based data centers to implement the vision of infrastructure as a

service (IaaS) and to promote effective server consolidation and application consolidation. A new method is

implemented in virtual machine monitor and representative workloads set method in cloud-based data centers does

not provide sufficient performance isolation to guarantee the effectiveness of resource sharing, particularly during

run time for a program on multiple virtual machines of the same physical machine are competing for computing and

communication resources. In this project, we present our performance measurement study of network I/O

applications in virtualized cloud. The proposed packet aggregation based mechanism is to transfer packets from the

driver domain to the virtual machines. By observational the performance is calculated and documented that our

proposal allows the virtual machines throughput to scale up at line rates. The proposed model allowed us to

dynamically tune the aggregation mechanism in order to achieve the best tradeoff between the packets delay and

throughput. This I/O virtualization model henceforth satisfies the infrastructure providers to offer Cloud computing

services.

Keywords: Cloud computing, Resource Sharing,Virtual Machine, cost effective..

 Introduction
In recent years, there has been a rapid

growth in the adoption of virtual machine technology

in data centers and in cluster environments.

Commercial virtualization software vendors such as

VMware, Xen Source (Citrix) and Microsoft are

increasingly making their presence felt in the server

market. On the hardware front, Intel and AMD have

incorporated support for virtualization in their CPU

instruction set [AMD, INT], and the PCI-SIG vendor

consortium has proposed standards for adding

support for virtualization in the PCI standard for I/O

virtualization [ATS, SRI, MRI]. This trend towards

server virtualization is driven by two main factors:

the savings in hard-ware cost achieved through the

use of virtualization, and the greater flexibility of

management of virtualized cluster resources.

In a typical server environment, each server

application is run on a separate server machine, both

in order to isolate it from other server applications,

and to customize its software stack (including the

operating system). Unfortunately, this results in

unnecessary server sprawl, where each server

machine runs at a low average utilization rate. Server

virtualization prevents this sprawl by consolidating

multiple underutilized servers onto a smaller number

of physical machines, thereby reducing the hardware

costs required to run multiple servers. Each server

application is run in its own operating system running

on a different virtual machine (VM), and multiple

VMs are multiplexed on a single physical machine by

the virtual machine monitor (VMM).

Virtualization Approaches

In a virtualized environment, the VMM

performs the task of virtualizing and multiplexing the

physical resources of the system among the virtual

machines. These resources include the CPU, memory

and I/O devices. Thus, it provides each VM with its

own virtual CPU(s), a subset of the host memory, and

a set of virtual I/O devices. The guest OS running in

the VM uses these virtual resources in a manner

similar to the way it uses physical resources in a

native environment.

There are two main distinct approaches to

virtualization, full virtualization and per-

virtualization. In full virtualization, the hardware

interface provided to guest operating systems is

exactly identical to the underlying native hardware

[Senthilkumar et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1830-1833]

interface. The advantage of this approach is that it

provides full binary compatibility with existing

operating systems, and thus does not require any

modification in the guest OS to run in the VM. The

downside of this approach is performance

degradation incurred for emulating the exact

semantics of the native hardware. The full

virtualization approach for x86 CPUs was pioneered

by VMware. With the introduction of hardware

support for virtualization in x86 CPUs, other

virtualization products, such as Citrix’s XenServer,

and Microsoft Hyper-V also support full

virtualization for unmodified OSes.

Scope of the Project

An important concern with server

virtualization is that the performance of server

applications running inside the VMs can degrade

significantly relative to their performance in a native

environment. This is because of the overheads

incurred by the VMM in the virtualization of the

physical resources of the system. This overhead can

be particularly high for the virtualization of I/O

devices [MST+05, SVL01], especially for I/O

devices which require frequent servicing by the

device driver, for example, interrupt-intensive

devices such as network cards.

We address the problem of efficiently

virtualizing the network interface in a virtual machine

environment. A number of important server

applications, such as web servers, and streaming

media servers are network-intensive applications, and

their overall performance depends crucially on the

networking performance of the system. In addition,

efficient networking in the VMM is useful for a

number of VMM operations, such as virtual machine

migration, network file system traffic, etc.

The network performance in a Type-II

VMM, using the Xen VMM as an example of this

architecture.Xen is an open-source VMM developed

at the University of Cambridge [BDF+03], and it uses

an I/O architecture similar to the Type-II hosted

VMM.

We focus on the network performance in

pervirtualized guest operating systems running on

Xen. We identify the fundamental performance

bottlenecks in the network virtualization stack of the

Xen VMM, and propose a number of solutions to

address these bottlenecks.

Workflow of Xen Network I/O
Each guest domain running on Xen is

provided with a number of virtual network interfaces

which it uses for all its network operations. Each

virtual interface in a guest domain (also called

frontend interface) has its own MAC address and is

connected to a corresponding ‘backend’ interface in

the driver domain through an ‘I/O channel’. The I/O

channel provides mechanisms for exchanging

network packets between the frontend and backend

interfaces. The frontend and backend interface can

signal each other using virtual interrupts when there

are network packets to be transferred between the

two.

Figure.1: Xen Network I/O Architecture

The above figure shows a high level picture

of the network I/O virtualization architecture of

Xen.All the backend interfaces in the driver domain

(corresponding to the guest domain’s virtual

interfaces) are connected to the physical NIC and to

each other through a network bridge. The

combination of the bridge and the I/O channel allows

the physical interface and the guest domain’s virtual

interfaces to transfer packets to each other based on

the destination MAC address of the packet. Thus, for

instance, on the transmit path, packets are transmitted

by the guest domain on its virtual interface, which are

then transferred over the I/O channel to the backend

interface, which then transfers them to the physical

interface over the network bridge, and finally the NIC

sends them out on the network. The receive path is

similar, except in the reverse direction.

The network virtualization overheads in the

Xen I/O architecture are similar to the I/O overheads

incurred in a Type-II VMM. Like in a Type-II VMM,

network I/O operations in the guest domain require

an address space switch to the driver domain in order

to invoke the NIC driver. The frequent switching for

I/O operations and the cost of operations in the I/O

virtualization stack (I/O channel transfers, bridging)

significantly degrade network performance in Xen

guest domains.

[Senthilkumar et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1830-1833]

XEN Virtualization Overheads
The benchmark measures the maximum

transmit/receive throughput achievable (in Mb/s)

over a small number of TCP connections, where each

TCP connection is used to send/receive traffic over a

different network card. The first set of histograms in

the figure shows the transmit performance and the

second set shows the receive performance.

The network performance when running the

workloads in the driver domain is very close to the

performance in a native Linux system. Thus, transmit

performance (3760 Mb/s) is the same as the Linux

transmit performance (except that it incurs higher

CPU overhead), and receive performance (1738

Mb/s) is within 70% of the native receive

performance (2508 Mb/s). In contrast, when the

workloads run in the guest domain, the performance

achieved is significantly lower. The transmit

performance in the guest domain (750 Mb/s) is only

20% of the native transmit performance, and the

receive performance (820 Mb/s) is roughly 33% of

native.

Figure 2: Network performance in guest and driver

domains running Xen

Fig 2.shows the transmit and receive

network performance for a netperf [NET] like bench-

mark running in three configurations: a Xen guest

domain, the Xen driver domain, and a native Linux

system.The reason for the large difference between

guest domain and driver domain performance is that

the driver domain invokes the NIC driver directly for

network I/O, whereas the guest domain needs to

switch to the driver domain, and transfer its packet

data to the driver domain address space, for all

network I/O operations. We note that in a Type-I

VMM, no switching is incurred for invoking the

device driver in the hypervisor from the guest

domain, and the packet remains in the same address

space, thus the performance of a Type-I VMM is

comparable to the performance of the Xen driver

domain.

Related Work
The complexity and cost of network

virtualization in the VMM depends on a number of

factors, with an important factor being the I/O

architecture used by the VMM. The I/O architecture

of the VMM defines the way it uses device drivers to

control the I/O devices in the system. There are two

main approaches to do this, and VMMs are classified

as either Type-I or Type-II depending on which

approach they take.

Type-I VMM:

In a Type-I VMM, or non-hosted VMM

(also called hypervisor-based VMM), the virtual

machine monitor completely controls all hardware

resources in the system, including the I/O devices,

and no guest OS is allowed to access the hardware

directly. Thus, the VMM provides its own device

drivers for controlling the I/O devices in the system.

Type-II VMM:

In a Type-II VMM, also called a hosted

VMM, the VMM does not control all hardware

directly. Instead, it relies on a special privileged host

operating system (called driver domain in Xen

terminology) for controlling and managing the

hardware, including all I/O devices. Thus, device

drivers for managing the I/O devices are provided by

the host OS, and the VMM must switch from the

guest to the host OS for every device I/O operation.

Thus, this approach entails greater performance

overhead for I/O operations.

The VMM architecture of Xen is a

combination of Type-I and Type-II VMM. Although

the Xen hypervisor controls the physical hardware

such as CPU and memory directly, it delegates

control of I/O devices to a special, privileged

operating system running in a VM, called the driver

domain. Thus, it is similar to a hosted VMM

architecture in that it relies on a host OS for

managing the I/O devices. However, Xen runs the

host OS in an isolated VM of its own, thus, the VMM

and other VMs are isolated from bugs or crashes

causes by the device driver.

[Senthilkumar et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1830-1833]

Conclusion
To maximize the benefit and effectiveness

of server consolidation and application consolidation

in virtualized cloud environments, we argue that it is

important to conduct in-depth performance

measurements for applications running on multiple

VMs hosted on a single physical machine. Such

measurements can provide quantitative and

qualitative analysis of performance bottlenecks that

are specific to virtualized environments, offering

deeper understanding of the key factors for effective

resource sharing among applications running in

virtualized cloud environments. We have presented

our performance measurement study of network I/O

applications in virtualized cloud environments.

References
[1] P. Apparao, R. Iyer, X. Zhang, D. Newell,

and T. Adelmeyer, “Characterization

&Analysis of a Server Consolidation

Benchmark,”Proc. ACM/USENIX Int’l

Conf. Virtual Execution Environments,pp.

21-29, 2008.

[2] M. Armbrust, A. Fox, R. Griffith, A.D.

Joseph, R.H. Katz, A.Konwinski, G. Lee,

D.A. Patterson, A. Rabkin, I. Stoica, and

M.Zaharia, “Above the Clouds: A Berkeley

View of Cloud Computing,”Technical

Report UCB/EECS-2009-28,2010.

[3] P. Barham, B. Dragovic, K. Fraser, S.

Hand, T. Harris, A. Ho, R.Neugebauer, I.

Pratt, and A. Warfield, “Xen and the Art

ofVirtualization,” Proc. ACM Symp.

Operating Systems Principles(SOSP), pp.

164-177, 2003.

[4] Z. Chen, D. Kaeli, and K. Murphy,

“Performance Evaluation of Virtual

Appliances,” Proc. First Int’l Workshop

VirtualizationPerformance: Analysis,

Characterization, and Tools, Apr. 2008.

[5] L. Cherkasova and R. Gardner, “Measuring

CPU Overhead for I/ O Processing in the

Xen Virtual Machine Monitor,” Proc.

USENIXAnn. Technical Conf. (ATC), p. 24,

2005.

[6] L. Cherkasova, D. Gupta, and A. Vahdat,

“Comparison of the Three CPU Schedulers

in Xen,” ACM Sigmetrics

PerformanceEvaluation Rev., vol. 35, no. 2,

pp. 42-51, Sept. 2007.

[7] B. Clark, T. Deshane, E. Dow, S. Evanchik,

M. Finlayson, J. Herne, and J.N. Matthews,

“Xen and the Art of Repeated Research,”

Proc.USENIX Ann. Technical Conf. (ATC),

pp. 135-144, 2004.

[8] C. Clark, K. Fraser, S. Hand, J. Hansen, E.

Jul, C. Limpach, I. Pratt, and A. Warfiel,

“Live Migration of Virtual Machines,”

Proc.USENIX Symp.Network Systems

Design and Implementation (NSDI),pp.

273-286, 2005.

[9] T. Deshane, Z. Shepherd, J.N. Matthews, M.

Ben-Yehuda, A. Shah, and B. Rao,

“Quantitative Comparison of Xen and

KVM,” Xen Summit Boston 2008.

[10] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and

H. Guan, “High Performance Network

Virtualization with SR-IOV,” Proc.

IEEE16th Int’l Symp. High Performance

Computer Architecture (HPCA),pp. 1-10,

2010.

[11] S. Govindan, A.R. Nath, A. Das, B.

Urgaonkar, and A.Sivasubramaniam,

“Xenand Co.: Communication-Aware

CPUScheduling for Consolidated Xen-

Based Hosting Platforms,”

Proc.ACM/USENIX Int’l Conf. Virtual

Execution Environments, pp. 126-136,

2007.

