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Abstract 
Virtualization is a key technology for cloud based data centers to implement the vision of infrastructure as a 

service (IaaS) and to promote effective server consolidation and application consolidation. A new method is 

implemented in virtual machine monitor and representative workloads set method in cloud-based data centers does 

not provide sufficient performance isolation to guarantee the effectiveness of resource sharing, particularly during 

run time for a program on multiple virtual machines of the same physical machine are competing for computing and 

communication resources.  In this project, we present our performance measurement study of network I/O 

applications in virtualized cloud. The proposed packet aggregation based mechanism is to transfer packets from the 

driver domain to the virtual machines. By observational the performance is calculated and documented that our 

proposal allows the virtual machines throughput to scale up at line rates. The proposed model allowed us to 

dynamically tune the aggregation mechanism in order to achieve the best tradeoff between the packets delay and 

throughput. This I/O virtualization model henceforth satisfies the infrastructure providers to offer Cloud computing 

services. 
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     Introduction 
In recent years, there has been a rapid 

growth in the adoption of virtual machine technology 

in data centers and in cluster environments. 

Commercial virtualization software vendors such as 

VMware, Xen Source (Citrix) and Microsoft are 

increasingly making their presence felt in the server 

market. On the hardware front, Intel and AMD have 

incorporated support for virtualization in their CPU 

instruction set [AMD, INT], and the PCI-SIG vendor 

consortium has proposed standards for adding 

support for virtualization in the PCI standard for I/O 

virtualization [ATS, SRI, MRI]. This trend towards 

server virtualization is driven by two main factors: 

the savings in hard-ware cost achieved through the 

use of virtualization, and the greater flexibility of 

management of virtualized cluster resources. 

In a typical server environment, each server 

application is run on a separate server machine, both 

in order to isolate it from other server applications, 

and to customize its software stack (including the 

operating system). Unfortunately, this results in 

unnecessary server sprawl, where each server 

machine runs at a low average utilization rate. Server 

virtualization prevents this sprawl by consolidating 

multiple underutilized servers onto a smaller number 

of physical machines, thereby reducing the hardware 

costs required to run multiple servers. Each server 

application is run in its own operating system running 

on a different virtual machine (VM), and multiple 

VMs are multiplexed on a single physical machine by 

the virtual machine monitor (VMM). 

 

Virtualization Approaches 

In a virtualized environment, the VMM 

performs the task of virtualizing and multiplexing the 

physical resources of the system among the virtual 

machines. These resources include the CPU, memory 

and I/O devices. Thus, it provides each VM with its 

own virtual CPU(s), a subset of the host memory, and 

a set of virtual I/O devices. The guest OS running in 

the VM uses these virtual resources in a manner 

similar to the way it uses physical resources in a 

native environment. 

There are two main distinct approaches to 

virtualization, full virtualization and per-

virtualization. In full virtualization, the hardware 

interface provided to guest operating systems is 

exactly identical to the underlying native hardware 
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interface. The advantage of this approach is that it 

provides full binary compatibility with existing 

operating systems, and thus does not require any 

modification in the guest OS to run in the VM. The 

downside of this approach is performance 

degradation incurred for emulating the exact 

semantics of the native hardware. The full 

virtualization approach for x86 CPUs was pioneered 

by VMware. With the introduction of hardware 

support for virtualization in x86 CPUs, other 

virtualization products, such as Citrix’s XenServer, 

and Microsoft Hyper-V also support full 

virtualization for unmodified OSes. 

 

Scope of the Project 

An important concern with server 

virtualization is that the performance of server 

applications running inside the VMs can degrade 

significantly relative to their performance in a native 

environment. This is because of the overheads 

incurred by the VMM in the virtualization of the 

physical resources of the system. This overhead can 

be particularly high for the virtualization of I/O 

devices [MST+05, SVL01], especially for I/O 

devices which require frequent servicing by the 

device driver, for example, interrupt-intensive 

devices such as network cards. 

We address the problem of efficiently 

virtualizing the network interface in a virtual machine 

environment. A number of important server 

applications, such as web servers, and streaming 

media servers are network-intensive applications, and 

their overall performance depends crucially on the 

networking performance of the system. In addition, 

efficient networking in the VMM is useful for a 

number of VMM operations, such as virtual machine 

migration, network file system traffic, etc. 

The network performance in a Type-II 

VMM, using the Xen VMM as an example of this 

architecture.Xen is an open-source VMM developed 

at the University of Cambridge [BDF+03], and it uses 

an I/O architecture similar to the Type-II hosted 

VMM.  

We focus on the network performance in 

pervirtualized guest operating systems running on 

Xen. We identify the fundamental performance 

bottlenecks in the network virtualization stack of the 

Xen VMM, and propose a number of solutions to 

address these bottlenecks. 

 

Workflow of Xen Network I/O 
Each guest domain running on Xen is 

provided with a number of virtual network interfaces 

which it uses for all its network operations. Each 

virtual interface in a guest domain (also called 

frontend interface) has its own MAC address and is 

connected to a corresponding ‘backend’ interface in 

the driver domain through an ‘I/O channel’. The I/O 

channel provides mechanisms for exchanging 

network packets between the frontend and backend 

interfaces. The frontend and backend interface can 

signal each other using virtual interrupts when there 

are network packets to be transferred between the 

two. 

 

 
Figure.1: Xen Network I/O Architecture 

The above figure shows a high level picture 

of the network I/O virtualization architecture of 

Xen.All the backend interfaces in the driver domain 

(corresponding to the guest domain’s virtual 

interfaces) are connected to the physical NIC and to 

each other through a network bridge. The 

combination of the bridge and the I/O channel allows 

the physical interface and the guest domain’s virtual 

interfaces to transfer packets to each other based on 

the destination MAC address of the packet. Thus, for 

instance, on the transmit path, packets are transmitted 

by the guest domain on its virtual interface, which are 

then transferred over the I/O channel to the backend 

interface, which then transfers them to the physical 

interface over the network bridge, and finally the NIC 

sends them out on the network. The receive path is 

similar, except in the reverse direction. 

The network virtualization overheads in the 

Xen I/O architecture are similar to the I/O overheads 

incurred in a Type-II VMM. Like in a Type-II VMM, 

network I/O operations in the guest domain require 

an address space switch to the driver domain in order 

to invoke the NIC driver. The frequent switching for 

I/O operations and the cost of operations in the I/O 

virtualization stack (I/O channel transfers, bridging) 

significantly degrade network performance in Xen 

guest domains. 
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XEN Virtualization Overheads 
The benchmark measures the maximum 

transmit/receive throughput achievable (in Mb/s) 

over a small number of TCP connections, where each 

TCP connection is used to send/receive traffic over a 

different network card. The first set of histograms in 

the figure shows the transmit performance and the 

second set shows the receive performance. 

The network performance when running the 

workloads in the driver domain is very close to the 

performance in a native Linux system. Thus, transmit 

performance (3760 Mb/s) is the same as the Linux 

transmit performance (except that it incurs higher 

CPU overhead), and receive performance (1738 

Mb/s) is within 70% of the native receive 

performance (2508 Mb/s). In contrast, when the 

workloads run in the guest domain, the performance 

achieved is significantly lower. The transmit 

performance in the guest domain (750 Mb/s) is only 

20% of the native transmit performance, and the 

receive performance (820 Mb/s) is roughly 33% of 

native. 

 
Figure 2: Network performance in guest and driver 

domains running Xen 

Fig 2.shows the transmit and receive 

network performance for a netperf [NET] like bench-

mark running in three configurations: a Xen guest 

domain, the Xen driver domain, and a native Linux 

system.The reason for the large difference between 

guest domain and driver domain performance is that 

the driver domain invokes the NIC driver directly for 

network I/O, whereas the guest domain needs to 

switch to the driver domain, and transfer its packet 

data to the driver domain address space, for all 

network I/O operations. We note that in a Type-I 

VMM, no switching is incurred for invoking the 

device driver in the hypervisor from the guest 

domain, and the packet remains in the same address 

space, thus the performance of a Type-I VMM is 

comparable to the performance of the Xen driver 

domain. 

 

Related Work 
The complexity and cost of network 

virtualization in the VMM depends on a number of 

factors, with an important factor being the I/O 

architecture used by the VMM. The I/O architecture 

of the VMM defines the way it uses device drivers to 

control the I/O devices in the system. There are two 

main approaches to do this, and VMMs are classified 

as either Type-I or Type-II depending on which 

approach they take. 

 

Type-I VMM: 

In a Type-I VMM, or non-hosted VMM 

(also called hypervisor-based VMM), the virtual 

machine monitor completely controls all hardware 

resources in the system, including the I/O devices, 

and no guest OS is allowed to access the hardware 

directly. Thus, the VMM provides its own device 

drivers for controlling the I/O devices in the system. 

 

Type-II VMM: 

In a Type-II VMM, also called a hosted 

VMM, the VMM does not control all hardware 

directly. Instead, it relies on a special privileged host 

operating system (called driver domain in Xen 

terminology) for controlling and managing the 

hardware, including all I/O devices. Thus, device 

drivers for managing the I/O devices are provided by 

the host OS, and the VMM must switch from the 

guest to the host OS for every device I/O operation. 

Thus, this approach entails greater performance 

overhead for I/O operations. 

The VMM architecture of Xen is a 

combination of Type-I and Type-II VMM. Although 

the Xen hypervisor controls the physical hardware 

such as CPU and memory directly, it delegates 

control of I/O devices to a special, privileged 

operating system running in a VM, called the driver 

domain. Thus, it is similar to a hosted VMM 

architecture in that it relies on a host OS for 

managing the I/O devices. However, Xen runs the 

host OS in an isolated VM of its own, thus, the VMM 

and other VMs are isolated from bugs or crashes 

causes by the device driver. 
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Conclusion 
To maximize the benefit and effectiveness 

of server consolidation and application consolidation 

in virtualized cloud environments, we argue that it is 

important to conduct in-depth performance 

measurements for applications running on multiple 

VMs hosted on a single physical machine. Such 

measurements can provide quantitative and 

qualitative analysis of performance bottlenecks that 

are specific to virtualized environments, offering 

deeper understanding of the key factors for effective 

resource sharing among applications running in 

virtualized cloud environments. We have presented 

our performance measurement study of network I/O 

applications in virtualized cloud environments. 
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